The Mortar Method with Approximate Constraint
نویسندگان
چکیده
منابع مشابه
Approximate Solution of Sensitivity Matrix of Required Velocity Using Piecewise Linear Gravity Assumption
In this paper, an approximate solution of sensitivity matrix of required velocity with final velocity constraint is derived using a piecewise linear gravity assumption. The total flight time is also fixed for the problem. Simulation results show the accuracy of the method. Increasing the midway points for linearization, increases the accuracy of the solution, which this, in turn, depends on the...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملThe Crouzeix-Raviart FE on Nonmatching Grids with an Approximate Mortar Condition
A new approximate mortar condition is proposed for the lowest order CrouzeixRaviart finite element on nonmatching grids, which uses only the nodal values on the interface for the calculation of the mortar projection. This approach allows for improved and more flexible algorithms compared to those for the standard mortar condition where nodal values in the interior of a subdomain, those closest ...
متن کاملA Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids a Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids 1
We consider the approximation of second order elliptic equations on domains that can be described as a union of sub-domains or blocks. We assume that a grid is deened on each block independently, so that the resulting grid over the entire domain need not be conforming (i.e., match) across the block boundaries. Several techniques have been developed to approximate elliptic equations on multibloc...
متن کاملNon-conforming Domain Decomposition Method for Plate and Shell Problems
The mortar element method is an optimal domain decomposition method for the approximation of partial differential equations on non-matching grids. There already exists applications of the mortar method to Navier-Stokes, elasticity, and Maxwell problems. The aim of this paper is to provide an extension of the mortar method to plates and shells problems. We first recall the Discrete Kirchhoff Tri...
متن کامل